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Abstract: This paper demonstrates the feasibility of a new approach to system inversion and
input signal estimation based on the exploitation of non-minimal state space feedback control
system design methods that can be applied to non-minimum phase and unstable systems. The
real and simulated examples demonstrate its practical utility and show that it has particular
relevance in a hydrological systems context.

1. INTRODUCTION

The problem of inverting linear dynamical system has a
long history in control and estimation theory. A good re-
view of the published literature is given in Gillijns [2007] 1 .
While most of this research is based on optimal estimation
theory, for example by the use of a special Kalman filter to
perform joint Minimum Variance Unbiased (MVU) state
and input estimation (e.g. Gillijns and Moor [2007]), one
theoretical approach to the related stable inversion prob-
lem [Antsaklis, 1978] is based on feedback control theory,
but it does not seem to have been applied in practice and
appears to be limited to systems with stable zeros.

The approach proposed and evaluated in the present
paper, initially here for linear single input, single output
systems, is also based on control concepts but exploits
a Non-Minimal State Space (NMSS) approach to control
system design and treats the input estimation as a tracking
problem. The performance of the proposed method is
compared with both MVU estimation and the alternative
PE-UIO method proposed by Sumis lawska et al. [2011],
based on parity equations, since this is another approach
that does not require full input-state estimation.

2. SYSTEM INVERSION AND INPUT ESTIMATION
USING FEEDBACK CONTROL

The method of linear system inversion and input signal
estimation proposed here assumes that a constant param-
eter, linear Transfer Function (TF) model has been identi-
fied and estimated previously on the basis of discrete-time
input data u(k) and output output data y(k), sampled at
a uniform sampling interval ∆t: i.e.,

x(k) =
B(z−1)

A(z−1)
u(k − δ) (i)

y(k) = x(k) + ξ(k) (ii)

(1)

1 ftp://zinc.esat.kuleuven.be/SISTA/gillijns/reports/PhD_

Gillijns.pdf

where z−1 is the backward shift operator, i.e. z−ry(k) =
y(k − r); and δ is any pure time delay of δ∆t time units
affecting the input-output dynamics. The system (1) can
be non-minimum phase or unstable. The additive noise
ξ(k) is introduced to indicate that, in general, the output
data on which the input estimation will be based, will be
noisy, so adding to the difficulty of the input estimation.
It might be advantageous to model the ξ(k) as an ARMA
process. However, in hydrological situations, for which this
approach to input estimation has been derived initially,
the ARMA model may not be appropriate and the white
noise source e(k) can be heteroscedastic, with the variance
σ2 = σ2(k) changing over time.

Given this model, the system inversion problem can be
stated as follows:

Given the model (1) and a new measurement
y(k) of the system output, over an observation
interval N∆t of N samples, generate an esti-
mate û(k), k = 1, 2, . . . , N , of the input u(k)
that caused this output behaviour.

The proposed control systems approach to the solution
of this problem is illustrated in Figure 1, where the TF
P (z−1)/Q(z−1) represents a controller designed to make
the output, denoted by ŷ(k−τ), track the command input,
in the form of the measured output data y(k), as closely as
possible. In this manner, the input control signal, denoted
by û(k − τ), will then provide an estimate of the input
signal, the quality of which will depend upon the control
system design and the time delay τ .

This time delay τ is introduced on ŷ(k − τ) and û(k − τ)
in order to recognise that the control system will not
respond instantaneously to the changes in y(k), even if
it is designed to have a very rapid, dead-beat response.
Consequently, the best estimate of the input will be lagged
by a time delay that is dependent on the control system
design. As we shall see in the later examples, however,
if the control system design procedure is powerful enough
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Fig. 1. PIP Control system block diagram formulated for
input signal estimation.

and inherently stable, with sufficiently high gains to ensure
rapid closed loop response, then the shape of the controlled
output ŷ(k − τ) should closely resemble y(k) as it was
τ samples previously. It is then possible to adjust both
the output ŷ(k) and the control input û(k) by a simple
temporal shift of τ samples to compensate for the time
delay, with û(k − τ) then providing the required estimate
of the input signal u(k).

Of course, the success of this approach depends criti-
cally in the performance of the control system design
procedure. The next section outlines the procedure used
in the later real and simulation examples: namely, high
gain Proportional-Integral-Plus (PIP) design that exploits
a Non-Minimal State-Space (NMSS) formulation of the
control problem.

3. PIP CONTROL SYSTEM DESIGN

The NMSS approach to state variable feedback control has
a fairly long history. For example, Young and Willems
[1972] suggested extending the minimal state space to
include an integral-of-error state variable, the feedback of
which induces Type 1 servomechanism performance (zero
steady state error to step commands) in the resulting state
variable feedback control system. This idea was then taken
further by Young et al. [1987] who showed how the natural
NMSS description of the linear, discrete-time TF model

y(k) =
b0 + b1z

−1 + · · ·+ bmz
−m

1 + a1z−1 + · · ·+ anz−n
u(k) (2)

has a state vector x(k) composed of the output y(k) and
its n past sampled values, together with the m − 1 past
sampled values of the input u(k) and an integral-of-error
state variable z(k), i.e.

x(k) = [y(k) y(k − 1) ... y(k − n+ 1)

u(k − 1) u(k − 2) ... u(k −m+ 1) z(k)]T
(3)

where,
z(k) = z(k − 1) + {yd(k)− y(k)} (4)

and yd(k) is the command input into the closed loop
(in the present context, the measured output y(k)). It
is easy to see that Type 1 servomechanism performance
is guaranteed by the introduction of z(k): provided the
closed loop remains stable and the command input yd(k) is
constant, then z(k) = z(k−1) in the steady state and, from
(4), y(k) = yd(k). Controllability and stability are assured
provided only that the polynomials A(z−1) and B(z−1)
are coprime and that the sum of the B(z−1) polynomial
coefficients is not zero [Young et al., 1987].

The obvious advantage of this NMSS description is that all
of the NMSS state variables are available for measurement

and can be used in an associated PIP control system to
provide for full State Variable Feedback (SVF) control,
with all its advantages in terms of pole assignment and
Linear-Quadratic (LQ) optimal control: i.e.,

u(k) = −gx(k); (5)

where g is the n+m dimensional SVF control gain vector,

g = [f0 f1 · · · fn−1 g1 · · · gm−1 − kI ] .
Provided there is no model mismatch, which is not a
problem in the present context, closed loop stability is
maintained by this PIP control law and very rapid closed
response can be engendered by specifying high gain, dead
beat or near dead beat response characteristics.

For instance, in the PIP-LQ design utilized in the later
examples, the cost function takes the usual form:

J =

∞∑
k=0

{xT (k)Qx(k) + ru2(k)} (6)

where the positive definite weighting matrix Q is most
often defined as a diagonal matrix, i.e.

Q = diag ( qy · · · qy qu · · · qu qe ) . (7)

Moreover, because of the special nature of the NMSS
formulation, r in (6) is typically set equal to qu. Using this
approach, qy, qu and qe, which represent the partial weight-
ings on the output, input and integral-of-error variables in
the NMSS vector x(k), are usually defined as follows:

qy =
Wy

n
; qu =

Wu

m
; qe = We (8)

so that the total weightings are given by Wy, Wu and We.
In relation to command input tracking, which is of greatest
importance in the present context, it is the weighting We

that most controls performance, so qe is optimized, with
qy and qu maintained at unity.

Normally, rapid closed loop response, of the kind required
in the present application, is undesirable because it can
lead to signal saturation and nonlinear dynamics in prac-
tical applications. In the present context, however, this is
of no concern since the control system is only being used
analytically to generate the control signal û(k − τ) that
allows ŷ(k − τ) to track y(k) and so provide an estimate
of the unknown input signal.

Full details of NMSS-based discrete-time PIP control are
given in the above reference, while Taylor et al. [2000],
together with the previous references cited therein, show
how the methodology can be generalized and applied to
continuous-time and δ-operator models, time delay sys-
tems and as a basis for Linear Exponential-of-Quadratic
(LEQ) robust control system design. More recent publi-
cations (e.g. [Wang and Young, 2006, Exadaktylos et al.,
2009]) show how the same NMSS formulation can be used
for model predictive control.

4. THE INPUT ESTIMATION (INPEST)
ALGORITHM

Given a PIP-LQ controller formulated in the manner of
Figure 1, the INPput ESTimation (INPEST) estimation
procedure can be considered as one of jointly optimizing
the PIP control system weight qe on the integral of error
state, as defined in equation (8), and the a priori unknown
τ sample time delay affecting ŷ(k − τ), so that the error



between ŷ(k−τ) and the measured output y(k) is as small
as possible in some sense. One potential problem with this
formulation is that when ŷ(k − τ) is generated in this
manner, it may ‘over-fit’ y(k), so tending to amplify the
closed loop additive noise effects

η(k) = GCLξ(k), (9)

where GCL is the closed loop TF, i.e.,

GCL =
P (z−1)B(z−1)

P (z−1)B(z−1) +Q(z−1)A(z−1)
. (10)

This, in turn, yields an insufficiently smooth estimate û(k)
of the unknown input u(k).

In order to avoid such over-fitting, it may be necessary to
impose some constraints on the optimization so that the
solution is consistent with the control input û(k) satisfying
certain requirements based, for instance, on our previous
knowledge of the system and the likely nature of the
unknown input. For instance, it could be fairly smooth,
at one extreme; or subject to abrupt changes at the other.
Examples of such behaviour are considered in the following
practical and simulation examples.

Based on the above considerations, one way to carry out
this kind of optimization is to consider it in the following
simple optimization terms:

{q̊e, τ̊} = arg min
qe,τ

J (qe, τ)

J (qe, τ) =

N∑
k=τ+1

ε2(k) + λ{∇û(k)}2

ε(k) = y(k)−ŷ(k − τ); ∇û(k) = û(k)− û(k − 1)

(11)

where q̊e and τ̊ are the optimum values of qe and τ ; λ is a
Lagrange multiplier that penalises the rate of change of the
control input; ε(k) is the tracking error between y(k) and
ŷ(k−τ); and ∇û(k) is the rate of change of û(k). Since this
is deterministic optimization, the user then needs to assess
the nature of the û(k) estimates obtained with different
values of λ in relation to the explanation of y(k) by ŷ(k),
noting that y(k) is the sum of the actual output and the
noise ξ(k).

There are various possible approaches to the selection of
λ, and this is the subject of on-going research. However,
if the variance of the tracking error ε(k) is plotted for
a range of λ values, then it has a ‘plateau’ of similar
values for increasing λ, until the multiplier has a first
noticeable effect on the error. This represent the lowest
feedback gain qe that is consistent with good tracking and,
therefore, provides maximum smoothing provided by λ,
without degrading the tracking error and the resultant
input estimation. In the examples below, therefore, the
value of λ is selected in this manner.

Traditional methods of off-line estimation often involve
smoothing of some kind. This seems desirable in the
present context in order to compensate for the high-
pass nature of the inversion process. As we shall see
in the subsequent sections 5 and 6, it is possible to
introduce pre- or post-processing stages into the INPEST
estimation procedure, based on recursive Fixed Interval
Smoothing (FIS) smoothing: see e.g. Young [2011], Young
and Pedregal [1996].

Although the INPEST method has only been considered
so far in deterministic terms, the later examples demon-
strate that it is robust and competes well with alternative
approaches, producing estimates that have low error vari-
ance and make good physical sense. Clearly, it could be
extended in various ways (see later in section 9). But such
extensions are not considered in the present paper: the aim
here is simply to demonstrate the feasibility and practical
utility of the approach in its simplest form, particularly
in the context of hydrological and other environmental
systems.

5. COMPARISON WITH OTHER METHODS

Sumis lawska et al. [2011] describe their PE-UIO method
of input estimation and compare the simulation results
of PE-UIO (using various parity space orders) with those
produced by the MVU method of Gillijns and Moor [2007].
They use a state space model with two inputs, one of which
is known. However, if this second input effect is removed,
then the TF model takes the form of equation (1) with:

A(z−1) = 1 + 0.05z−1 − 0.765z−2

B(z−1) = 1 + 0.55z−1 − 0.38z−2; δ = 1
(12)

with the zero mean, serially uncorrelated, additive noise
ξ(k) having variance σ2 = 1.0, yielding 6.6% noise by
standard deviation. The total simulated data set comprises
20,000 samples but Fig. 2 presents the results obtained
over a short 500 sample segment of these data and is
similar to Fig. 3 in Sumis lawska et al. [2011] 2 . However,
it also includes the results obtained using the INPEST
method with λ = 0.0001, and optimized parameters of
q̊e = 0.63 and τ̊ = 3. The full comparative results using
these optimized parameters are presented in Table 1, which
shows that INPEST and PE-UIO yield very similar error
variances and both are superior to MVU, which appears
to have some problems handling Non-Minimum Phase
(NMP) systems.

Table 1. Comparative Error Variance Results

Method N = 500 N = 20, 000 LowNoise

PE-UIO 0.26 0.27 0.031
INPEST 0.24 0.32 0.000013

INPEST+FIS 0.18 0.26 -
MVU 1.35 1.31 0.000013

In fact, the best results are obtained by INPEST when the
output y(k) is objectively pre-processed by FIS estimation
using the irwsmopt and irwsm routines in the CAPTAIN
Toolbox (INPEST+FIS) 3 . These routines depend on the
ability of the stochastic Random Walk (RW) or Integrated
Random Walk (IRW) models to satisfactorily represent the
dynamic behaviour of the output measurement y(k). These
results suggest that if, as in this example, they are able to
do this, then such pre-processing could be a useful option
for INPEST. If not, then the dhr or dlr routines provide for
alternative FIS estimation that is capable of representing
more complex stochastic behaviour (see [Young, 2011]).

Note that, although INPEST and PE-UIO perform simi-
larly in this example, PE-UIO has difficulty with some of
2 For full details, see Sumis lawska et al. [2011] but note that Fig. 3
has some errors so cannot be compared directly with Fig. 2 here.
3 see http://captaintoolbox.co.uk/Captain_Toolbox.html



the examples discussed in subsequent sections, which are
typical of ‘stiff’ environmental models (models with widely
spaced eigenvalues), where the transfer function has a zero
close to unity. Also, because it contains an approximation
(due to the parity space FIR filter), it does not perform as
well as INPEST or MVU when there are very low levels of
noise, as we see in the final column of Table 1.
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Fig. 2. Comparison of the INPEST, PE-UIO and MVU
estimation results for simulated data with the esti-
mation errors for INPEST and PE-UIO shown above.

6. EXAMPLE 2: ESTIMATION OF THE INPUT IN A
TRACER EXPERIMENT ON A RIVER

This second example is based on the data plotted in
Fig. 3, which shows the results of a potassium bromide
(KBr) tracer experiment carried out in a wetland area as
part of a study by Chris Martinez and William R. Wise
of the Environmental Engineering Sciences Department,
University of Florida for the City of Orlando [Martinez and
Wise, 2003]. Although both the two hourly sampled input
and output signals are shown here, only the downstream
output y(k) and a previously estimated TF model of the
data will be used to estimate the upstream input u(k).
This input is considered as unknown, except that it is
is assumed to be relatively smooth, based on normal
experience with such experimental tracer data.
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Fig. 3. Tracer experiment data used in Example 1.

A continuous-time model was estimated initially using the
rivcbj routine in the CAPTAIN Toolbox for Matlab and

this was converted to the following discrete-time model
using the c2d routine in Matlab:

y(k) =
0.0176 + 0.0586z−1 − 0.0737z−2

1− 1.8680z−1 + 0.8706z−2
u(k) + ξ(k) (13)

where ξ(k) is heteroscedastic noise. This model has two
widely separated real roots with associated time constants
of 83.7 and 17.4 hours and NMP characteristics introduced
by the conversion to discrete-time. It is clear, therefore,
that the TF is not invertible and that näıve inversion will
fail catastrophically.
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Fig. 4. Tracer experiment input estimation based on ADZ
estimated model and the measured noisy input.

The right panel of Fig. 4 compares the input estimate
û(k) obtained in this case with the actual input u(k);
while the left panel compares the resulting model output
ŷ(k) with the measured output y(k). These estimates are
based on optimized values of τ̊ = 7 and q̊e = 0.8, as
obtained with λ = 0.001 in the cost function J (qe, τ).
The estimate is quite good and the only obvious deficiency
is at the time where the tracer concentration begins to
rise. However, this is due mostly to the approximation
introduced by the lumped parameter modelling of the
distributed system response and not by any deficiency in
the inversion procedure.

Although these results are quite good, they do not reveal
too much about the nature of the estimation, which is
better illustrated by simulation analysis based on the
model (13). First, if λ = 0 and there is no noise on
the data, then τ̊ = 3, q̊e = 407 and the estimate û(k)
is virtually perfect, even though, as expected, the näıve
inversion estimate is grossly unstable. This demonstrates
well the efficacy of this method in the low-noise situation.

Fig. 5 shows the results obtained when there is additive
coloured noise generated by a first order AR model with
lag coefficient 0.4 and white noise input variance σ2 =
0.002, yielding about 6% of coloured noise by standard
deviation. The estimates shown in Fig. 5 are based on
optimized values of τ̊ = 7 and q̊e = 0.8, as obtained with
λ = 0.0004 in the cost function J (qe, τ). In this case, the
forward-path controller is computed as:

P (z−1)

Q(z−1)
=

0.757− 1.414z−1 + 0.659z−2

1− 2.5564z−1 + 2.123z−2 − 0.567z−3
(14)

and the estimate û(k − τ) is generated by:
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Fig. 5. Tracer experiment input estimation based on sim-
ulated data with higher level output coloured noise.

û(k − τ) =
0.757− 1.414z−1 + 0.659z−2

1− 2.543z−1 + 2.168z−2 − 0.623z−3
y(k)

(15)

A measure of the uncertainty in the input estimate can be
obtained by recourse to simple Monte Carlo Simulation
(MCS) analysis. Fig. 6 shows the results of such analysis
for 100 realizations, demonstrating that the estimate is
unbiased and its variance is acceptable.
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Fig. 6. Tracer experiment input estimation based on sim-
ulated data with higher level output coloured noise:
MCS simulation results.

7. EXAMPLE 3: MORE DIFFICULT SITUATIONS

The input-output data in the tracer experiment example
are quite smooth with no overt non-minimum phase char-
acteristics, so it is interesting to consider some potentially
more difficult situations.

First, Fig. 7 shows the results obtained when the input
is changed to a unit step. Here, λ = 0, the optimized
values are q̊e = 1000 and τ̊ = 3 and the initial input
estimate detects the step change well but is quite noisy,
as one would expect. However, the post-optimization FIS
smoothing, using the irwsm routine with NVR=0 and
a single intervention point at the detected step change
location (after 466 hours), removes noise and produces a
near-perfect estimate of the unit step input.

Fig. 8 shows results obtained when the tracer simulation
model is modified to have strong, visible NMP charac-
teristics, with a clearly defined initial negative response
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Fig. 7. Input estimation for a step input.

to the input. The problem in this situation is that the
inherent NMP response characteristics are carried through
to the closed loop response, leaving an anomalous negative
response in the estimate.
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Fig. 8. Input estimation for a non-minimum phase system.

Fig. 8 illustrates a solution to this problem that utilizes the
‘command input anticipation’ version, PIP-COM, of the
PIP design method that is able to remove NMP features
from the closed loop response [Taylor et al., 2000]. The
results were obtained with an optimized gain parameter of
q̊e = 1.0, as obtained with λ = 0.0001. The shift τ = 40 is
not optimized, since it is defined by the PIP-COM design.

8. EXAMPLE 4: ESTIMATION OF EFFECTIVE
RAINFALL FROM MEASURED FLOW IN A RIVER

This example is a little different from the previous ones
since the objective is not to estimate the input but to
diagnose where the known input is unable to satisfactorily
explain the measured output and to suggest how it needs
to be modified to correct for such errors. The input in
question is the effective rainfall in a Data-Based Mecha-
nistic (DBM) rainfall-flow model relating effective rainfall
to flow in a river, where the heteroscedastic noise variance
changes as a function of the flow [see e.g. Young, 2001].

Various models have been suggested for such effective rain-
fall generation (see e.g. Beven [2001]) but none of these is
able to explain the flow very accurately. Consequently, the
identification of the magnitude and location of significant
errors in the generated effective rainfall series could help
to further research in this area of study. Fig. 9 shows the
MCS results for a typical example of such analysis.
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Fig. 9. Estimation and correction of effective rainfall.

In this example, it is known that the input effective rainfall
has significant errors and, being a rainfall measure, the
estimated input û(k) ≥ 0, ∀k. Fig. 9 shows the results
obtained with λ = 0.00001, which results in optimized
parameters of q̊e = 67 with τ̊ = 3. The coefficient of
determination associated with the simulated flow output
is R2

T = 0.993 (compared with R2
T = 0.897 for the original

DBM model).

Closer evaluation of the results shown in Fig. 9 suggests
that the statistically significant adjustments to the effec-
tive rainfall, as suggested by those corrections that are
larger than the confidence bounds in the upper ‘Correc-
tion’ graph of the right hand panel in the figure, make good
physical sense: e.g. some errors appear due to changes in
the pure time delay that are not present in the model.

9. CONCLUSIONS

This paper has demonstrated the feasibility of a new ap-
proach to system inversion and input signal estimation,
INPEST, that is based on the exploitation of non-minimal
state space feedback control system design methods and
will work with non-minimum phase and unstable systems.
In the comparative study of section 5, the results show
that INPEST has very similar performance to the PE-
UIO method, based on parity equations. However, it has
some advantages over PE-UIO when applied to ‘stiff’ mod-
els of the kind encountered in environmental modelling
and examined in the other examples of sections 6 to 8,
where the TF has zeros close to unity. From the results
presented here, INPEST appears to be robust in practical
application and quite easy to use: it provides a simple
way of both estimating an input perturbation from output
measurements and diagnosing limitations in the model
and/or the measured data. It could also be used for fault
detection: e.g. when faults are modelled as an unknown
input [Gillijns, 2007].

In its present form, the INPEST method is deter-
ministic and requires numerical optimization, but the
favourable results obtained for both real and simulated,
non-minimum phase systems, in comparison with alter-
native stochastic methods, suggest that it is suitable for
future research on several topics. These include: formulat-

ing the method more formally in theoretical terms: for
example, by considering stochastic analysis using PIP-
LQG control system design; extending it to multivariable
systems using multivariable PIP control system design
methods; and adding an integrated method of fixed inter-
val smoothing. In practical terms, however, this paper has
demonstrated that the INPEST approach already works
well enough to be of significant practical utility in the
hydrological and environmental sciences, for which it has
been designed primarily. Moreover, it can be implemented
very simply using available CAPTAIN Toolbox routines.
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