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Abstract: The paper discusses the emulation of large, distributed parameter, computer models
by low order, continuous-time, transfer function models obtained using the SRIVC method of
identification and estimation for continuous-time models. This yields a minimally parameterized,
reduced order, ‘nominal’ emulation model that often reproduces the dynamic behavior of the
large model to a remarkable degree. In full Dynamic Model Emulation (DEM), the objective is
to emulate the high order model over a whole, user-defined range of parameter values, so that
it can act as a surrogate for the high order model in applications that demand fast, repeated
solution, as in Monte Carlo simulation and sensitivity analysis, or be used as a low order model in
automatic control system design and adaptive forecasting applications. Most of the paper deals
with the ‘stand-alone’ emulation of two high order, distributed parameter, computer models for
the transport and dispersion of solutes in water systems.

1. INTRODUCTION

This paper briefly reviews the concept of a Dynamic Emu-
lation Model (DEM; also called a ‘meta-model’) and shows
how the development of a DEM is facilitated by the use
of continuous-time system identification and estimation.
In particular, it shows how the Simplified Refined Instru-
mental Variable algorithm for identifying and estimating
continuous-time models from discrete-time, sampled data
(SRIVC) has been used in DEM synthesis, where it serves
as the basis for model reduction using Dominant Mode
Analysis (DMA) [Young, 1999]. Most of the paper is
concerned with describing the successful low-order emu-
lation of two high order, distributed parameter, computer
models for simulating solute transport and dispersion in
water systems. The paper also draws a distinction between
‘nominal’ DEM models that emulate the large simulation
model for a specified, single set of its parameters; and the
‘full’ DEM that maps the relationship between the two
models in a more complete manner involving a whole, user-
specified range of parameter values.

2. EMULATION MODELLING

The idea of full emulation modeling was suggested by
Oakley and O’Hagan [2004] and Li et al. [2006], but
this was restricted mainly within the context of static
models and associated sensitivity analysis. Other recent
references on this topic that address the idea of dynamic
emulation modeling are Conti et al. [2007] and Bayarri
et al. [2007a,b]. The present paper outlines the partly
heuristic Data-Based Mechanistic (DBM) approach to
dynamic emulation modeling that has been described and
evaluated in detail by Young and Ratto [2009, 2011], to
which the reader is directed for further information on

its strengths and limitations. Here, the reduced order
dominant mode model is obtained by DMA applied to
the large simulation model and the mapping between the
parameters of the large model and the coefficients of this
reduced order model is in the form of a non-parametric
(graphical) hyper-surface. Note that such an emulation
model is limited to the defined domain of simulation
model parameter values used in this analysis (although
extrapolation outside this domain may be possible in
certain circumstances if the mapping is parameterized).

The complete dynamic emulation model behaves like the
high order simulation model and so it can usefully replace
it in certain applications. For example, it can assist in
(or even replace) conventional sensitivity analysis, which
is normally required to investigate which of the many
parameters that characterize the high order simulation
model are most important in defining the models dynamic
behaviour. And it can take the place of the simulation
model in hydrological applications such as real-time flood
forecasting [Beven et al., 2008] or the modeling of solute
transport and dispersion in water bodies [Young, 2011]. It
is the use of emulation modeling in this latter context that
is considered in the present paper.

The four stages of the DBM emulation model development,
as illustrated diagrammatically in Figure 1, are as follows:

(1) Identification and Estimation of a Nominal
Transfer Function (TF) Model: On a nominal
set of large model parameters (X̄ = (X̄1, . . . , X̄p)),
Dominant Mode Analysis (DMA: see Young [1999])
is used to provide an identifiable, reduced order TF
model that reproduces the response y(t) of the large
model as well as possible. This large model response is
obtained using a ‘reference’ set of forcing input data
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1. Define the nominal high order 
model  parameter vector

Using the nominal set of 
parameter values    , perform 
planned experiments on the high 
order model with training input   
and perform Dominant Mode 
Analysis (DMA) to obtain a 
nominal, reduced dynamic order, 
Transfer Function (TF) Model with 
estimated coefficient vector    .   

2. Repeat 1. over a selected region 
of the high order model para-
meter domain     to obtain a Monte 
Carlo randomized sample of TF 
coefficient vectors       associated 
with     ,  
3. Mapping of the Monte Carlo 
sample {     ,      },                 by 
non-parametric regression, tensor 
product cubic spline or Gaussian 
Process Emulation.

4. Validation: extrapolation to 
untried      and new input 
sequences      using interpolated 
reduced order model coefficients 
from the mapping results in 3. and 
different input variables (this 
includes uncertainty and sensitivity 
analysis).
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Fig. 1. A diagrammatic interpretation of full model emu-
lation.

u(t) that sufficiently excites the model to allow for
identification of the dominant dynamic modes, while
X̄ is typically set at the mean of the distributions
used for the parameters of the large simulation model.
This reduced order TF model constitutes the Nominal
Emulation Model (NEM).

(2) MC Randomization: Monte Carlo (MC) simula-
tion analysis is carried out, by taking a training set
X(i), i = 1, . . . , Nr, of independent, randomly chosen
parameters from the large model, and computing the
output response y(t)(i) of the original large order
model, always keeping the same set of forcing input
data u(t) used in the first step. Then, for each MC
computer experiment {u(t), y(t)(i)}, a dynamic TF
model with the same reduced order obtained in step

1. above is estimated, obtaining a MC set θ(i) of TF
coefficients.

(3) Mapping: in order to emulate the large simulator at
any untried sample X∗, a mapping between the TF
models estimated in step 2. and the X parameters
is required. This mapping can be achieved in two
different ways: ‘stand-alone parameter mapping’ and
‘response mapping’ modes.

(4) Validation, uncertainty and sensitivity analy-
sis: the previous three steps yield the Full Emulation
Model (FEM). This FEM can be validated by generat-
ing dynamic simulations y(u∗(t)|X∗, t) at untried X∗,
for any new sequence of forcing inputs u∗(t), and then

comparing this with the FEM output response ŷ(t) to
the same forcing inputs u∗(t). A complete statistical
uncertainty estimation can be derived for the surro-
gate dynamic behaviour, as well as a comprehensive
sensitivity analysis.

Note that ‘response mapping’ is a version of emulation
approach where, for a given set of inputs and a set (grid) of
large model parameters, a set of outputs is generated, and
the emulator’s response to this set of inputs is obtained by
mapping using the stored outputs directly. This approach
is not considered in the present paper but further details
are available in other published papers: Young and Ratto
[2011], Higdon et al. [2007], Bayarri et al. [2007b].

The NEM is quite simple since it relies mainly on the
well-tried ability [e.g. Young et al., 1996, Young, 1999]
of the TF identification and estimation routines in the
CAPTAIN Toolbox 1 for MatlabTM to perform the model
reduction that is the core of DMA. As a result, the
dynamic behaviour of the nominal emulation model is
normally almost identical to that of a large linear computer
simulation model and, depending on the nature of nonlin-
ear dynamics, can reproduce well the behaviour of large
nonlinear models using State-Dependent Parameter (SDP)
estimation and models [e.g. see Young et al., 2009, Young,
2011, and the previous references therein]. On the other
hand, the development of the FEM presents a much more
complex computational problem because it requires the
manipulation of data in multivariable parametric spaces of
different, and potentially high, dimensions. And, as Young
and Ratto Young and Ratto [2011] point out, it includes
approximations that can reduce the emulation accuracy
when compared with that of the NEM.

3. DBM EMULATION OF DISTRIBUTED
PARAMETER SOLUTE TRANSPORT AND

DISPERSION MODELS

In this paper, the emulation methodology outlined in the
previous section is applied to the two large computer
simulation models described below.

3.1 The Quasi-Distributed ADZ Model

The Aggregated Dead Zone (ADZ) model has been used
for modelling solute dispersion in rivers for many years
[Beer and Young, 1983, Young and Wallis, 1993]. The
Semi-Distributed ADZ (SDADZ) model is constructed
rather simply by a chain of suitably small ADZ elements
connected in series, parallel or even feedback (should this
relate to a physically meaningful situation). For example, if
the concentration of conservative solute at the ith reach of
a river is denoted by Ci(t), the equation for the transport
and dispersion of the solute, over a river having n identical
reaches, takes the form [Young, 2011]:

T
dCi(t)

dt
= −Ci(t)+GCi−1(t)+GdCi+1(t) i = 1, 2, . . . n

(1)
Alternatively, this model can be represented in TF form:

1 The CAPTAIN Toolbox is freely available via the Internet: see
http://captaintoolbox.co.uk/Captain_Toolbox.html.
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where the output is defined by the state variable Ci(t).
The input to this whole system is then the input to
the farthest upstream reach, denoted by u(t) = C0(t),
and the output is that of the farthest downstream reach,
denoted by x(t) = Cn(t). If it is assumed that any pure
advective time delays are lumped into a single time delay
τ at the input, the complete deterministic model can be
represented in the following general TF form:

x(t) =
b0s

m−1 + b1s
m−2 + . . . + bm

sn + a1sn−1 + . . . + an
u(t− τ) (4)

If G and Gd are selected so that the system is conservative,
then bm = an and the overall steady state gain is unity.

The model (3) for large n and the time constant T small, is
a ‘quasi-distributed’ model, in the sense that it describes a
distributed system but is formulated using ordinary, rather
than partial differential equations. However, its behaviour
is very similar to partial differential equation equivalents,
such as the well known Advection Dispersion Equation
(ADE). Indeed, if the SDADZ model is discretized it
has similarity with the finite difference solution of the
ADZ model and has response characteristics similar to the
’Transient Storage’ model described in section 3.2. Because
of its form, the SDADZ model is easy to code in Matlab
and this was used in the emulation study described in the
next section 3.1.1.

3.1.1 SDADZ Emulation Modelling and Results Here,
the NEM analysis is carried out using an input signal
in the form of two repeated pulses of period 1000 hours
and amplitude 180 entering at reach 1. Although this is
certainly not an optimal input from a statistical identifi-
cation and estimation standpoint, it is sufficient to produce
good TF emulation models. For instance, the continuous-
time SRIVC identification results for reach 5, as produced
by the CAPTAIN rivcbjid routine, are as follows (shown
verbatim):

den num del YIC Rt2
5 6 1 -25.7517 1.000000
5 6 0 -18.6377 0.999998
5 5 0 -22.4703 0.999998
4 5 1 -19.1426 0.999976
4 5 0 -11.6862 0.999976
4 4 0 -18.1096 0.999976

Here, Y IC is the order identification criterion [Young,
1989] (most negative value identifies the best model);
and R2

T is the coefficient of determination based on the
simulated output (unity indicates a perfect fit). Although
this suggests that the [5 6 1] model is marginally better,
the [5 5 0] model is not only almost as good but it has one
less parameter and, most importantly, it proves superior

in the case of reach 40, where the best identified model is
[5 5 79].

To summarize, therefore, this initial, NEM analysis, which
examines the extremes of the large simulation model
response characteristics, shows that a [5 5 τ ] continuous-
time TF model of the form;

x̂(t) =
b̂0s

4 + b̂1s
3 + b̂2s

2 + b̂3s+ b̂4
s5 + â1s4 + â2s3 + â3s2 + â4s+ â5

u(t− τ) (5)

provides very good emulation at both extremes. For reach
5, τ = 0 and the parameter estimates, obtained using the
SRIVC option in the CAPTAIN rivcbj routine, are (note
that a5 = b4 and mass is conserved):

â1 = 0.5003; â2 = 0.0772; â3 = 0.00335

â4 = 4.6033× 10−5; â5 = 1.7265× 10−7

b̂0 = 7.0278× 10−4; b̂1 = −4.5845× 10−4

b̂2 = 1.0403× 10−3; b̂3 = 3.1639× 10−5

b̂4 = 1.7265× 10−7

(6)

while for reach 40, τ = 79 and the estimates are:

â1 = 0.06116; â2 = 0.001475; â3 = 1.6720× 10−5

â4 = 8.7469× 10−8; â5 = 1.6736× 10−10

b̂0 = 1.2088× 10−5; b̂1 = 1.0735× 10−6

b̂2 = 9.9738× 10−8; b̂3 = 2.8188× 10−9

b̂4 = 1.6736× 10−10

(7)

In both cases, the explanation of the large model response,
when validated with a single impulse input of 70 for
two hours, is almost perfect, as shown in Figure 2, with
R2

T = 0.999999 in both cases. Similarly good validation
results are obtained for other inputs.
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Fig. 2. Nominal emulation validation for the SDADZ
model at reaches 5 and 40 by continuous-time RIVC
estimated 5th order TF models.

The FEM mapping analysis is carried out using the same
input forcing function u(t), which is shown in Figure 3
together with three typical simulation model responses
measured at reach 5 for different values of the Dispersion
Coefficient D and and Velocity V . It involves 850 sepa-
rate TF model identification and estimation runs, using
50 equally spaced values of D over the range {0.030 −



1.5} m2/sec and 17 equally spaced values of V over the
range {0.00045 − 0.0014} m/sec. Because the computa-
tional burden is not too large in this case, it is possible to
carry out the mapping over this grid of simulation model
parameter values and so ensure good mapping coverage
without having to resort to MC randomization. More
specifically, the TF model identification at each combi-
nation of D and V values is based on the [5 5 τ ] model
with τ considered in the range {0 − 2} sec. These 3 calls
to the rivcbj routine in CAPTAIN take about 10 seconds
on a quad-core Mac Pro computer, so that the overall
computation time for the mapping analysis is about 2.3
hours.
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Fig. 3. Emulation experimental data at reach 5 for 3
combinations of the dispersion coefficient, D, and
velocity, V .

Given the results of these mapping experiments, the map-
ping relationships are obtained using the interp2 routine
in Matlab, with the ‘spline’ option. Figure 4 is a three
dimensional plot of the resulting mapping surface for the
five TF denominator parameters ai, i = 1, 2, . . . 5. Note
that the mapping surface in Figure 4 is quite smooth
for D > 0.1m2/sec but there is a quite sharp change
at smaller values than this, suggesting that a finer grid
might be necessary in this region. However this region is
not important in the present case and this has not been
investigated further.

The final stage of the full emulation analysis is validation
on interpolated values of the parameters and Figure 5
shows the validation results for a forcing function of the
more general type that might be expected if the model was
being employed for the evaluation of pollutant transport
and dispersion. In both cases, the emulation is exceptional,
with R2

T values greater than 0.999.

3.2 The Transient Storage (TS) model

The TS model is a development of the ADE model and
is expressed as two coupled equations that describe the
transport and dispersion of a solute in a river channel:
a standard, partial differential ADE for the concentration
C(t, x) of solute in the main channel, linked by an exchange
coefficient α to an ordinary differential equation that

Fig. 4. DBM stand-alone emulation: parameter mapping
for reach 5: 3 dimensional plot of the five TF denomi-
nator parameters ai, i = 1, 2, . . . 5, as functions of the
dispersion coefficient, D, and the velocity, V .
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Fig. 5. Typical validation result for the SDADZ emulation
model.

describes the variation of the solute concentration Cs(t)
in the storage zone:

∂C(t, x)

∂t
= −Q

A

∂C(t, x)

∂x
+

1

A

∂

∂x

(
AD

∂C(t, x)

∂x

)
+ α (Cs(t, x)− C(t, x))

dCs(t, x)

dt
= −α A

As
(Cs(t, x)− C(t, x))

(8)

Here t denotes time; x is the distance along the main
channel; Q is the volumetric flow; A is the main channel
cross-sectional area; α is the exchange coefficient; As is the
storage zone cross-sectional area; and D is the longitudinal
dispersion coefficient.

The OTIS model developed by Runkel et al. [1996] ex-
pands the original TS model by including the solute’s
sorption and release, lateral inflow etc. It has been selected
to illustrate the application of the proposed emulation
software environment because it is a well known and very
popular simulation model that provides a reasonable ex-
ample for the full emulation of a linear, distributed param-



eter system. Crucially for the present study, however, the
developers of OTIS provide a Fortran simulation module
and full documentation, including Fortran source code and
several binaries (see http://water.usgs.gov/software/
OTIS/).

3.2.1 DBM Emulation Software Development using the
OTIS Model Since the OTIS model is very popular in
practical applications, it has been used in the continuing
development of a software system within Matlab to auto-
mate the DBM emulation process [Tych and Young, 2011].
The emulation framework uses a p-dimensional grid de-
fined by the user, where each of the dimensions represents
one of the parameters of the large model, and is split into a
number of points defining the nodes. In the current version,
the grid defines a hyper-cube in p dimensions, uniformly
divided along each of its dimensions.

The uniformity of this large model parameter grid is
dictated by the requirement for flexible visualisation of the
estimated low order model parameters that are embedded
within the DBM emulation approach. However, the large
model parameters can be sampled within the large model
parameter space in a variety of ways, and the uniform
grid required for visualisation can be ‘filled in’ after the
simulation and estimation stages, during the mapping and
DBM identification stage. For example the user could use
a (potentially fine) uniform grid, subsampled using any
available strategy: e.g. a version of Monte Carlo sampling,
as in Step 2 (section 2) and then, during Step 3, apply
an interpolation procedure, such as the Smoothing Spline
Analysis of Variance (ANOVA) procedure used in Young
and Ratto [2011], to fill the remaining grid nodes.

Every stage of the emulation procedure has its associated
p-dimensional data structure constructed on the same p-
dimensional grid of the large model parameters. There
are three data structures, which contain the results of the
subsequent stages in the emulation process:

(i) The ParSpace structure contains the parameters X of
the large model: each node I includes the values X(I),
where I defined above is the set of indices spanning
the entire p-dimensional grid-space.

(ii) The OutSpace structure contains outputs of the large
model y(t)(i) given its chosen input(s), obtained from
simulation of the large model for the selected subset
X(i) ; i ⊆ I of its parameter sets - the ParSpace nodes.

(iii) The EstSpace structure of the same dimensionality
contains in its nodes, indexed by i, the low order TF
models (model objects, potentially multiple), includ-

ing parameter vectors θ(i) and their uncertainty in-
formation, as well as other quantities contained in the
standard Matlab Identification Toolbox idpoly objects
(see for example http://www.mathworks.com/help/
toolbox/ident/ref/idpoly.html), which are also
returned by the Captain Toolbox TF identification
(rivcbjid) and estimation (rivcbj) routines. These em-
ploy the input-output data contained in the OutSpace
structure. Since in general the OutSpace structure’s
grid may be sub-sampled at the nodes i ⊆ I, the
estimation is carried out at the nodes i where sim-
ulations were carried out; subsequent p-dimensional
interpolation (or approximation/extrapolation, as ap-

propriate), expanding the mapping to the whole grid
I, can then be used at the mapping stage and so
complete the grid for visualisation purposes.

These structures can be linked with the steps in the DBM
emulation modelling procedure outlined in section 2. In
particular, stage 1. relates not only to the sampling of the
large model parameter space, but also to the identification
and estimation of the low order TF model. There is also
an unavoidable preparatory step of experimenting with the
feasible TF model structures over the full large model pa-
rameter range in order to ensure that the entire parameter
sub-space of the model can be adequately mapped into
its TF counterpart. Mapping is necessarily limited to the
user-specified range of large model parameters that are
considered adequate for the required modelling task. Nat-
urally, the selected TF model structure needs to emulate
the large model well over the whole of this range.

If it is required, the most time consuming processes of ‘fill-
ing’ the, potentially subsampled, OutSpace and EstSpace
structures (large model simulations and estimation of the
TF models) can be parallelised quite easily, either by man-
ually splitting the ParSpace into ‘slices’ run as separate
processes, or through the use of the Matlab parallel tools.
The linking of the ParSpace and EstSpace structures is the
inherent part of the mapping step of DBM emulation. The
full mapping visualisation requires TF model parameter
values being available at all the nodes on the grid as
indexed by I. TF parameters will be either estimated from
the Input-Output data (over the i ⊆ I subset of the grid),
or interpolated (or approximated) over the remainder of
the full grid: I \ i during the mapping process.

The validation as well as uncertainty and sensitivity anal-
ysis are facilitated by the existing data structures, as
shown in the example below. Each of the plots, including
annotations, is produced automatically by a single call to a
visualisation function, so that the whole framework would
easily lend itself to being absorbed into a full GUI-based
package.

3.2.2 OTIS Emulation Modelling and Results Figures 6
and 7 illustrate the emulation of the OTIS model using
the software system described in the previous sub-section
(further details are available in Tych and Young [2011]).
Figure 6 shows the 3D projection of the mapping of the a1
parameter of the emulating TF from α (termed ALPHA in
the OTIS parameters list) and D (termed DISP in OTIS)
parameters of the full OTIS model, with As (AREA2
in OTIS) fixed. Note that in this and subsequent auto-
matically generated figures, the original names of OTIS
parameters are used, and clarified in the captions. All the
plots generated by the software are labelled automatically,
using the OTIS configuration file nomenclature.

Finally, Figure 7 shows a typical validation result for the
the DBM emulation of the OTIS model. The shaded area
is the 95% uncertainty band and we see that the full model
simulation line is practically indistinguishable from the
emulator output.

4. CONCLUSIONS

This paper has introduced the concept of dynamic emu-
lation modelling (DEM) and shown how the data-based



Fig. 6. 3D projection of the a1 parameter mapping from α
(ALPHA) and D (DISP).
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Fig. 7. A typical validation result for the the OTIS
emulation model.

mechanistic (DBM) modelling approach to DEM is able
to exploit the simplified refined instrumental variable
method of continuous-time transfer function model iden-
tification and estimation (SRIVC) for dominant mode
analysis (DMA) and the ‘stand-alone’ emulation of large,
distributed parameter transport and dispersion models.
Other methods of model reduction could be used but the
use of the SRIVC algorithm in DMA offers some advan-
tages: e.g. it can out-perform existing methods, such as
balanced model reduction and proper orthogonal projec-
tion, as illustrated by its application to the ‘Gasifier’ model
reduction demonstration example in Matlab [see Young,
2011, pages 362-365] and, unlike these methods, it does
not require direct access to the model equations.
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